Advance Chemistry

Sunday, October 25, 2020

ऑक्साइड ( Oxide )

        ऑक्साइड ( Oxide )
ऑक्सीजन के साथ किसी तत्व से बने  द्विअंगी यौगिक ऑक्साइड कहलाते हैं|
         रासायनिक गुणों के आधार पर ऑक्साइड निम्न चार प्रकार के होते हैं- (1) अम्लीय ऑक्साइड 
(2) क्षारीय ऑक्साइड 
(3) उदासीन आक्साइड 
(4) उभयधर्मी ऑक्साइड

(1) अम्लीय ऑक्साइड- 
जो ऑक्साइड जल से अभिक्रिया करके अम्ल बनाते हैं उन्हें अम्लीय ऑक्साइड कहते हैं| जैसे- SO2, CO2, P2O5 आदि 
(2) क्षारीय ऑक्साइड -
जो ऑक्साइड जल से अभिक्रिया करके क्षार बनाते हैं उन्हें क्षारीय ऑक्साइड कहते हैं| जैसे- Na2O, MgO, CaO आदि 
(3) उदासीन आक्साइड- 
इस समूह के ऑक्साइड न तो अम्लीय होते हैं और ना ही क्षारीय होते हैं| यह ऑक्साइड अम्ल और क्षार से क्रिया नहीं करते| इनका लिटमस पर कोई प्रभाव नहीं होता जैसे- CO, NO, H2O आदि 
(4) उभयधर्मी ऑक्साइड-
जो ऑक्साइड अम्लीय तथा क्षारीय दोनों प्रकार के गुण दर्शाते हैं उन्हें उभयधर्मी ऑक्साइड कहते हैं| यह ऑक्साइड अम्ल तथा क्षार से अलग-अलग क्रिया करके लवण बनाते हैं| जैसे- ZnO, PbO, Al2O3 आदि 

Saturday, October 24, 2020

डाईऑक्सीजन या ऑक्सीजन

डाईऑक्सीजन या ऑक्सीजन
सर्वप्रथम सन 1772 में स्वीडन के रसायनज्ञ शीले ने इसे बनाया और इसका नाम अग्नि वायु(Fire air) रखा| 1774 में अंग्रेज वैज्ञानिक प्रीस्टले ने इसका नाम फ्लोजिस्टनविहीन वायु रखा| 1776 में फ्रांसीसी रसायनज्ञ लेवोशिये ने इस गैस के गुणों का अध्ययन किया तथा बताया कि यह गैस पदार्थों के दहन में सहायक है| दहन से बने परिणामी पदार्थों में अम्ल के गुण पाए जाते हैं इसलिए उन्होंने इस गैस का नाम ऑक्सीजन(अम्ल उत्पादक) रखा|
प्राप्ति-
पृथ्वी पर पाए जाने वाले तत्वों में ऑक्सीजन की मात्रा सर्वाधिक हैं| जल में यह लगभग 89%(भारानुसार) होती है तथा वायु में यह 21% होती है|
बनाने की विधियां 
(1) प्रयोगशाला विधि-
प्रयोगशाला में ऑक्सीजन गैस पोटैशियम क्लोरेट को मैग्नीज डाइऑक्साइड (उत्प्रेरक) की उपस्थिति में गर्म करके बनाई जाती है|

2KClO3 --------> 2KCl  +  3O2 

(2) धातुओं के ऑक्साइडों को गर्म करके-
जब मरकरी ऑक्साइड को गर्म किया जाता है तो ऑक्सीजन बनती है|
            गर्म
2HgO --------> 2Hg  +  O2 
(3) औद्योगिक विधि-
इस विधि में वायु को द्रवित करके उसका प्रभाजी आसवन करके ऑक्सीजन प्राप्त करते हैं| प्रभाजी आसवन करने पर नाइट्रोजन (क्वथनांक -194°C) ऑक्सीजन(क्वथनांक - 183°C) से अधिक वाष्पशील  होने के कारण पहले निकलती है और ऑक्सीजन शेष रह जाती है|
(4) जल का विद्युत अपघटन करने पर-
अम्ल या क्षार मिश्रित जल को वोल्टामीटर में लेकर विद्युत अपघटन करने पर ऑक्सीजन एनोड पर प्राप्त होती है|

ऑक्सीजन के गुण 
(A) भौतिक गुण-
(1) यह रंगहीन, गंधहीन, स्वादहीन तथा पारदर्शक गैस है|
(2) जल में थोड़ी मात्रा में विलेय है |
(3) क्वथनांक 90.2 K तथा गलनांक 54.4 K  होता है|
(B) रासायनिक गुण-
(1) लिटमस पर प्रभाव-
यह गैस लिटमस के प्रति उदासीन है|
 (2) दहन में सहायक-
यह गैस स्वयं नहीं जलती परंतु वस्तुओं के जलाने में सहायक है|
(3) धातुओं के साथ क्रिया-
यह धातुओं के साथ क्रिया करके उनके ऑक्साइड बनाती है|
2Mg  + O2 -------> 2MgO  
2Ca  + O2 -------> 2CaO 
 (4) अधातुओं के साथ क्रिया-
यह अधातुओं से क्रिया करके उनके ऑक्साइड बनाती है|
C + O2 -------> CO2 
S + O2 -------> SO2 
(5) हाइड्रोजन से अभिक्रिया-
ऑक्सीजन तथा हाइड्रोजन के मिश्रण में विद्युत स्फुलिंग प्रवाहित करने पर जल बनता है|
2H2  +  O2 -------> 2H2O  
(6) सल्फर डाइऑक्साइड से क्रिया-
यह सल्फर डाइऑक्साइड के साथ उत्प्रेरक की उपस्थिति में 450° C  पर गर्म करने से सल्फर ट्राइऑक्साइड गैस बनाती है|
                      Pt 
2SO2  +  O2 -------> 2SO3 

उपयोग -
(1) जीवो के सांस लेने में
(2) वेल्डिंग करने में
(3) ऑक्साइड बनाने तथा ऑक्सीकारक के रूप में
(4) अंतरिक्ष यात्री, गोताखोरों व मरीजों को कृत्रिम श्वसन प्रदान करने में
(5) नाइट्रिक अम्ल सल्फ्यूरिक अम्ल तथा क्लोरीन आदि बनाने में

ऑक्सीजन का असामान्य व्यवहार

ऑक्सीजन का असामान्य व्यवहार
समूह 16 का प्रथम सदस्य अर्थात ऑक्सीजन समूह के अन्य सदस्यों से अनेक गुणों में भिन्नताएँ प्रदर्शित करता है| इसे ही ऑक्सीजन का असामान्य व्यवहार कहा जाता है|
        ऑक्सीजन के इस असामान्य व्यवहार के प्रमुख कारण निम्न है-
(1) परमाणु आकार का कम होना 
(2) विद्युत ऋणात्मकता का अधिक होना
(3) संयोजी कक्ष में रिक्त d- कक्षकों की अनुपस्थिति

ऑक्सीजन तथा समूह 16 के अन्य तत्वों के मध्य प्रमुख भिन्नताएँ निम्न हैं-
(1) भौतिक अवस्था- सामान्य ताप पर ऑक्सीजन एक गैस है जबकि समूह के अन्य तत्व ठोस हैं|
(2) परमाणविकता-  ऑक्सीजन अणु(O2) द्विपरमाण्विक होता है जबकि समूह के अन्य तत्वों के अणु अधिक जटिल तथा बहुपरमाण्विक होते हैं जैसे- S8 
(3)हाइड्रोजन बंधता- अधिक विद्युत ऋणात्मक होने के कारण ऑक्सीजन अपने यौगिकों में हाइड्रोजन बंधों का निर्माण करता है जबकि अन्य तत्व हाइड्रोजन बंधों का निर्माण नहीं कर पाते|
(4) ऑक्सीकरण अवस्थायें- अधिकतर यौगिकों में ऑक्सीजन -2 ऑक्सीकरण  अवस्था प्रदर्शित करती है| समूह के अन्य तत्व -2 के अतिरिक्त +2,+4, +6 ऑक्सीकरण अवस्थायें भी प्रदर्शित करते हैं|
(5) बहुबंधों का निर्माण- ऑक्सीजन बहुबंधो का निर्माण कर सकती है जबकि समूह के अन्य तत्व में इस प्रकार के बंधों  के निर्माण की प्रवृत्ति अधिक नहीं होती|

समूह 16 के तत्वों के रासायनिक गुण

समूह 16 के तत्वों के रासायनिक गुण
समूह 16 के तत्वों के प्रमुख रासायनिक गुण निम्न हैं -
(1)  हाइड्रोजन के प्रति क्रियाशीलता-
इस समूह के सभी तत्व H2E प्रकार के हाइड्राइडों का निर्माण करते हैं जैसे- H2O, H2S, H2Se आदि|
* H2O रंगहीन तथा गंधहीन द्रव है लेकिन समूह के अन्य हाइड्राइड रंगहीन अप्रिय गंध युक्त विषैली गैसें हैं|
* H2S से H2Te की ओर जाने पर इनकी अम्लीय शक्ति बढ़ती है|
* H2O के अतिरिक्त H2S से H2Te की ओर जाने पर इनकी अपचायक शक्ति बढ़ती है|
(2) हैलोजन के प्रति क्रियाशीलता-
समूह 16 के तत्व सामान्यतः EX2, EX4 तथा EX6 प्रकार के हैलाइड बनाते हैं|
(3) ऑक्सीजन के प्रति क्रियाशीलता-
समूह 16 के तत्व अनेक प्रकार के ऑक्साइड जैसे- मोनोऑक्साइड(EO), डाइऑक्साइड(EO2), ट्राईऑक्साइड(EO3) आदि का निर्माण करते हैं|

Sunday, October 18, 2020

समूह 16 के तत्व (ऑक्सीजन परिवार)

समूह 16 के तत्व (ऑक्सीजन परिवार)
आवर्त सारणी के समूह 16 में ऑक्सीजन(O), सल्फर(S), सेलेनियम(Se), टेल्यूरियम(Te), तथा पोलोनियम(Po) तत्व हैं| यह सभी तत्व प्रतिनिधि तत्व हैं तथा आवर्त सारणी के p-ब्लॉक में स्थित हैं|
 समूह के प्रथम चार तत्व अर्थात ऑक्सीजन, सल्फर, सैलेनियम तथा टेल्लूरियम चैल्कोजन अर्थात अयस्कों का निर्माण करने वाले तत्व कहलाते हैं|
समूह 16 के तत्वों के सामान्य लक्षण-
(a) इलेक्ट्रॉनिक विन्यास-
समूह 16 के तत्वों की  बाह्य कक्ष संरचना ns2np4 प्रकार की होती है| इनके इलेक्ट्रॉनिक विन्यास निम्न प्रकार हैं-
(b) भौतिक गुण-

(1) भौतिक अवस्था तथा आण्विक संरचना-
ऑक्सीजन एक गैस है जबकि समूह के अन्य सभी तत्व सामान्य ताप पर ठोस अवस्था में पाए जाते हैं| इसका कारण यह है कि ऑक्सीजन अणु द्विपरमाण्विक होता है जबकि अन्य तत्वों के अणु अधिक जटिल होते हैं; जैसे- S8
(2) परमाणु एवं आयनिक त्रिज्या-
समूह 16 के तत्वों की परमाणु त्रिज्याएँ  समूह 15 के संगत तत्वों के परमाणु त्रिज्याओं की तुलना में कम होती है| समूह में आगे बढ़ने पर इन तत्वों की परमाणु व आयनिक त्रिज्या में वृद्धि होती है|
(3) घनत्व-
समूह में आगे बढ़ने पर इन तत्वों के घनत्व में क्रमशः वृद्धि होती है|
(4) गलनांक और क्वथनांक- 
समूह में आगे बढ़ने पर इन तत्वों के गलनांको व क्वथनांको में क्रमिक वृद्धि होती है| लेकिन पोलोनियम के गलनांक और क्वथनांक सेलेनियम की तुलना में कम होते हैं इसका कारण निष्क्रिय युग्म प्रभाव है|
(5) आयनन ऊर्जा- 
समूह 16 के तत्वों की आयनन ऊर्जाओं के मान काफी अधिक होते हैं| इसका कारण यह है कि परमाणु आकार कम होने के कारण इनके नाभिकीय आवेश अधिक होते हैं|
     समूह में आगे बढ़ने पर इन तत्वों की आयनन ऊर्जा निरंतर कम होती जाती है क्योंकि परमाणु आकार में वृद्धि होती है|
(6) विद्युत ऋणात्मकता-  
समूह 16 के तत्वों की विद्युत ऋणात्मकता का मान समूह 15 के तत्वों की तुलना में अधिक होता है| ऑक्सीजन आवर्त सारणी का दूसरा सर्वाधिक विद्युत ऋणात्मक तत्व है (फ्लोरीन विद्युत ऋणात्मकता में प्रथम स्थान पर है)
      समूह में आगे बढ़ने पर विद्युत ऋणात्मकता कम होती जाती है|
(7) ऑक्सीकरण अवस्थाये- 
समूह 16 के सभी तत्व -2  ऑक्सीकरण अवस्था प्रदर्शित करते हैं| इसके अतिरिक्त ऑक्सीजन में +2, व -1  अवस्थाएं भी प्रदर्शित होती हैं| सल्फर तथा समूह के अन्य भारी तत्व +2, +4 तथा +6 ऑक्सीकरण अवस्था में भी प्रदर्शित करते हैं| इनकी +4 तथा +6 अवस्थाएं अधिक स्थिर हैं|
(8) धात्विक लक्षण- 
समूह 16 के तत्वों में धात्विक लक्षण बहुत कम पाए जाते हैं| लेकिन समूह में आगे बढ़ने पर धात्विक लक्षणों में वृद्धि होती है| ऑक्सीजन तथा सल्फर अधातु हैं, सैलेनियम तथा टेल्यूरियम उपधातु हैं, जबकि पोलोनियम धात्विक प्रकृति का होता है|
(9) श्रृंखलाबद्धता- 
ऑक्सीजन में श्रृंखलित होने की प्रवृत्ति अधिक नहीं होती है सल्फर में श्रृंखलित होने की प्रवृत्ति अधिक पाई जाती है| समूह के अन्य तत्वों में यह प्रवृत्ति बहुत कम पाई जाती है|
(10) अपररूपता-
इस समूह के सभी तत्व अपरूपता प्रदर्शित करते हैं| ऑक्सीजन दो अपररूपों O2 तथा O3 के रूप में पाया जाता है| सल्फर अनेक अपररूपों जैसे- मोनोक्लिनिक सल्फर, रोंबिक सल्फर, प्लास्टिक सल्फर आदि रूपों में पाया जाता है| सैलेनियम 6 अपररूपों में पाया जाता है जबकि टेल्युरियम तथा पोलोनियम में से प्रत्येक के दो अपररूप पाए जाते हैं|

Saturday, October 17, 2020

नाइट्रिक अम्ल(Nitric acid)

      नाइट्रिक अम्ल(Nitric acid)
 इसे सर्वप्रथम ग्लॉबर ने सन 1658 में शोरे(पोटैशियम नाइट्रेट,KNO3) तथा सल्फ्यूरिक अम्ल के मिश्रण को गर्म करके बनाया था इसलिए इसे शोरे का अम्ल भी कहते हैं|

बनाने की विधि -

(1) प्रयोगशाला विधि-
प्रयोगशाला में नाइट्रिक अम्ल को पोटैशियम नाइट्रेट या सोडियम नाइट्रेट की सल्फ्यूरिक अम्ल से क्रिया के द्वारा बनाया जाता है|
KNO3 + H2SO4 ----> KHSO4 + HNO3 

NaNO3 + H2SO4 ----> NaHSO4 + HNO3 
इस विधि में एक रिटॉर्ट में पोटेशियम नाइट्रेट या सोडियम नाइट्रेट तथा सल्फ्यूरिक अम्ल को लगभग बराबर मात्रा में लेकर गर्म करने पर नाइट्रिक अम्ल की वाष्प उत्पन्न होती है, जिसे ग्राही फ्लास्क  में ले जाकर ठंडा करने पर यह द्रव अवस्था में प्राप्त हो जाता है|

(2) औद्योगिक विधि -
ओस्टवाल्ड की विधि-
इस विधि में अमोनिया(1आयतन) तथा वायु(10 आयतन) के मिश्रण को एक उत्प्रेरक कक्ष में से प्रवाहित किया जाता है| उत्प्रेरक कक्ष का ताप लगभग 800°C होता है तथा इसमें प्लैटिनम की जालियां लगी होती हैं| प्लैटिनम उत्प्रेरक का कार्य करता है| इस ताप पर प्लैटिनम की उपस्थिति में अमोनिया की वायु की ऑक्सीजन के साथ निम्न अभिक्रिया होती है-
                       Pt/800°C 
4NH3 + 5O2 ---------------> 4NO + 6H2O 
इस प्रकार प्राप्त नाइट्रिक ऑक्साइड तथा शेष वायु के मिश्रण को एक ऑक्सीकारक स्तंभ में भेजा जाता है| ऑक्सीकारक स्तंभ में नाइट्रिक ऑक्साइड का नाइट्रोजन डाइऑक्साइड में ऑक्सीकरण हो जाता है|
2NO + O2 ------> 2NO2 
इस प्रकार प्राप्त NO2 गैस को एक अवशोषण स्तंभ में प्रवाहित करके नाइट्रिक अम्ल बना लेते हैं|
2NO2 + H2O ----> HNO3 + HNO2
3HNO2 ----> HNO3 + 2NO + H2O 

भौतिक गुण-
(1) शुद्ध नाइट्रिक अम्ल एक रंगहीन द्रव है|
(2) प्रकाश की उपस्थिति में यह नाइट्रोजन के ऑक्साइडओं में धीरे-धीरे अपघटित होता रहता है इस कारण इसमें से धूम निकलते रहते हैं तथा इसकी गंध तीव्र होती हैं|
(3) यह जल में विलेय है|
(4) त्वचा पर यह अत्यंत पीड़ा दायक फफोलों का निर्माण करता है|
(5) इसका हिमांक 231.4K व क्वथनांक 355.6K है|
रासायनिक गुण-
(1) अम्लीय गुण-
यह एक प्रबल अम्लों की भांति व्यवहार करता है|
HNO3 + NaOH ----> NaNO3 + H2O 
(2) अपघटन-
साधारण ताप पर प्रकाश की उपस्थिति में नाइट्रिक अम्ल धीरे धीरे अपघटित होता रहता है व नाइट्रोजन परॉक्साइड(NO2)  गैस बनती है जो द्रव में घुलकर उसका रंग पीला कर देती है|
4HNO3 ----> 4NO2 + O2 + 2H2O 
(3) ऑक्सीकारक गुण-
नाइट्रिक अम्ल एक प्रबल ऑक्सीकारक है|यह अपघठित होकर नवजात ऑक्सीजन प्रदान करता है| यही नवजात ऑक्सीजन ऑक्सीकरण के लिए उत्तरदायी होता है| 
2HNO3 ----> 2NO +H2O + 3O 
अधातुओं का ऑक्सीकरण-
S + 6HNO3 -----> H2SO4 + 6NO2 + 2H2O

C + 4HNO3 -----> CO2 + 4NO2 + 2H2O

2P + 10HNO3 -----> 2H3PO4 + 10NO2 + 2H2O

I2 + 10HNO3 -----> 2HIO4 + 10NO2 + 4H2O

धातुओं का ऑक्सीकरण-
Mg + 2HNO3 -----> Mg(NO3)2 + H2 

Mn + 2HNO3 -----> Mn(NO3)2 + H2 

4Zn + 10HNO3 -----> 4Zn(NO3)2 + 3H2O + NH4NO3
 
4Fe + 10HNO3 -----> 4Fe(NO3)2 + 3H2O + NH4NO3
 
यौगिकों का ऑक्सीकरण-

3H2S + 2HNO3 -----> 2NO  + 4H2O + 3S 

6KI + 8HNO3 -----> 3I2 + 4H2O +6KNO3 + 2NO 

HNO3 के उपयोग -
(1) विभिन्न रासायनिक पदार्थ बनाने में
(2) प्रयोगशाला अभिकर्मक के रूप में
(3) अम्लराज(3भाग HCl व 1 भाग HNO3) बनाने में
(4) उर्वरक बनाने में
(5) विस्फोटक पदार्थ बनाने में
(6) सिल्वर तथा गोल्ड के धातुकर्म तथा शुद्धिकरण में
(7) धातुओं के नाइट्रेट बनाने में जो फोटोग्राफी, रंगाई, छपाई आदि में काम आते हैं|
(8) औषधियों, इत्र, रंग, कृत्रिम रेशम आदि बनाने में 

सधूम्र नाइट्रिक अम्ल-
शुद्ध नाइट्रिक अम्ल में 100% HNO3 होता है लेकिन कुछ समय बाद इसके अपघटन के कारण इसमें नाइट्रोजन डाइऑक्साइड घुल जाती है| जिसके कारण इसका रंग पीला हो जाता है|
   सधुम्र नाइट्रिक अम्ल में नाइट्रिक अम्ल की प्रतिशतता लगभग 98% होती है तथा इसमें अधिक मात्रा में नाइट्रोजन डाइऑक्साइड गैस घुली रहती है| नाइट्रोजन डाइऑक्साइड घुले रहने के कारण इसमें से धूम्र  निकलते रहते हैं| अतः इसे सधुम्र नाइट्रिक अम्ल कहते हैं|
HNO3 का परीक्षण 
भूरा वलय परीक्षण-
सांद्र H2SO4 की अल्प मात्रा की उपस्थिति में यह FeSO4 के जलीय विलयन के साथ भूरा वलय बनाता है| इस परीक्षण को वलय परीक्षण कहते हैं|
       इस परीक्षण का उपयोग नाइट्रेट आयन की उपस्थिति ज्ञात करने के लिए भी किया जाता है|
6FeSO4 + 3H2SO4 + 2HNO3 --> 3Fe2(SO4)3 + 2NO + 4H2O 

FeSO4 + NO -----> FeSO4.NO(भूरा वलय) 

Monday, October 5, 2020

कोलॉयडी विलयनों (सॉल) के गुण

कोलॉयडी विलयनों (सॉल) के गुण
कोलाइडी विलयनों के मुख्य गुण निम्न हैं-

(1) सामान्य भौतिक गुण-

(a) विषमांग प्रकृति-
कोलाइडी विलयन विषमांग होते हैं|
(b) परिक्षिप्त कणों की दृश्यता-
कोलाइडी कणों को नेत्रों द्वारा नहीं देखा जा सकता है|
(c) छननता-
कोलाइडी कण सामान्य फिल्टर पेपर से पार हो जाते हैं| लेकिन जंतु झिल्ली या अतिसूक्ष्म फिल्टर से कोलॉइडी कण पार नहीं हो पाते हैं|
(d) स्थायित्व-
कोलाइड स्थिर होते हैं तथा इनके परिक्षिप्त कण कुछ समय तक रखने पर नीचे नहीं बैठते हैं|

(2) अणुसंख्य गुण -
कोलाइडी विलयन वास्तविक विलयनों की भांति अणुसंख्य गुण जैसे- वाष्प दाब में कमी, क्वथनांक में उन्नयन, हिमांक में अवनमन तथा परासरण दाब प्रदर्शित करते हैं|

(3) गतिज गुण या ब्राउनियन गति-
अति सूक्ष्मदर्शी के द्वारा देखने से कोलॉइडी कण  टेढ़े मेढ़े मार्ग में लगातार गति करते हुए दिखाई देते हैं| इस गुण की खोज एक वनस्पति वैज्ञानिक रॉबर्ट ब्राउन ने सन 1827 में की थी| इसलिए इसे ब्राउनियन गति कहा जाता है|

(4) प्रकाशिक गुण (टिंडल प्रभाव)-
अंधेरे में रखे कोलाइडी विलयन में जब तीव्र प्रकाश पुंज को प्रवाहित किया जाता है तो इन किरणों का मार्ग नीले प्रकाश द्वारा दृश्य मान हो जाता है| इस घटना को टिंडल प्रभाव कहते हैं, तथा दृश्य मान मार्ग को टिंडल शंकु कहा जाता है| इस घटना को सर्वप्रथम टिंडल ने सन 1869 में देखा था|

(5)  वैद्युत गुण-
कोलाइडी विलयनों के मुख्य वैद्युत गुण निम्न हैं-
(a) कोलाइडी कणों पर विद्युत आवेश की उपस्थिति-
कोलाइडी विलयनों के कोलाइडी कणों पर एक निश्चित प्रकार का आवेश होता है, जबकि उसके परिक्षेपण माध्यम पर इसके बराबर तथा विपरीत आवेश होता है| कोलाइडी कणों पर उपस्थित आवेश की प्रकृति के आधार पर कोलाइडी सॉल को धन आवेशित सॉल  तथा ऋण आवेशित सॉल में बांटा जा सकता है जैसे-
धन आवेशित सॉल- धात्विक हाइड्रोक्साइड सॉल जैसे- Fe(OH)3, Al(OH)3 आदि 
 ऋण आवेशित सॉल- धात्विक सॉल जैसे- Au, Ag, Cu आदि 

(b) वैद्युत कण संचलन (Electrophoresis)-
वैद्युत क्षेत्र के प्रभाव में किसी इलेक्ट्रोड विशेष की ओर कोलाइडी कणों के गति करने की प्रवृत्ति को वैद्युत कण संचलन कहा जाता है|
        इस प्रक्रिया में कोलाइडी विलयन को एक पात्र में भरकर उसमें दो इलेक्ट्रोड कैथोड व एनोड लगाकर यदि विद्युत धारा प्रवाहित की जाती है तो परिक्षिप्त प्रावस्था के कण विपरीत आवेश के इलेक्ट्रोड की ओर गति करने लगते हैं|

(c) वैद्युत परासरण (Electro-osmosis)-
अर्ध पारगम्य झिल्ली के द्वारा कोलाइडी कणों की गति को स्थिर कर विद्युत क्षेत्र के प्रभाव में परिक्षेपण माध्यम के गति करने के प्रक्रम को वैद्युत परासरण कहा जाता है|

(d) स्कंदन या फ्लोकुलेशन (Coagulation or Flocculation )-
कोलाइडी विलियन में विद्युत अपघटन मिलाए जाने पर उसका स्कंदन हो जाता है| अतः विद्युत अपघट्य मिलाए जाने पर कोलाइडी विलयन के अवक्षेपण के प्रक्रम को स्कंदन या फ्लोकुलेशन कहा जाता है|
जैसे- यदि खून बह रहा हो तो फिटकरी लगाने से खून का स्कंदन हो जाता है|

हार्डी-शुल्जे नियम-
कोलाइडी विलियन में मिलाए जाने वाले विपरीत आवेशित आयन की संयोजकता जितनी अधिक होगी कोलाइडी विलयन के लिए उसकी स्कंदन शक्ति भी उतनी ही अधिक होगी|
 जैसे - As2S3 के स्कंदन के लिए विभिन्न धनायनों  की स्कंदन क्षमता का क्रम निम्न होगा-
Al3+ > Ba2+ > Na+ 
 इसी प्रकार धन आवेशित सॉल जैसे- Fe(OH)3 के स्कंदन के लिए विभिन्न निर्णय की स्कंदन क्षमता का क्रम निम्न है-
[Fe(CN)6]4- > PO43- > SO42- > Cl- 
फ्लोकुलेशन मान-
किसी सॉल के स्कंदन के लिए एक विद्युत अपघट्य की आवश्यक न्यूनतम मात्रा (मिलीमोल प्रति लीटर में) को उस विद्युत अपघट्य का फ्लोकुलेशन मान कहा जाता है|

रक्षी कोलॉयड (Protective colloids )-
किसी द्रव स्नेही कोलाइड का उपयोग कर विद्युत अपघट्य मिलाए जाने पर द्रव विरोधी कोलाइडी विलियनों की स्कंदन से रक्षा करने के प्रकरण को कोलाइडी विलयन का रक्षण कहा जाता है तथा इस उद्देश्य के लिए प्रयुक्त द्रव स्नेही कोलाइड को रक्षी कोलाइड कहा जाता है|
 जैसे- गोल्ड सॉल (एक द्रव विरोधी सॉल) में जिलेटिन सॉल (एक द्रव स्नेही सॉल) को मिलाने पर सोडियम क्लोराइड विलयन के द्वारा गोल्ड साल का स्कंदन आसानी से नहीं होता है|
स्वर्ण संख्या (Gold Number )-
किसी रक्षी कोलाइड की स्वर्ण संख्या मिलीग्राम में व्यक्त उसकी वह न्यूनतम मात्रा है जो एक 10ml स्वर्ण सॉल में स्कंदन रोकने में उस समय ठीक पर्याप्त होती है जबकि स्वर्ण सॉल में 10% सोडियम क्लोराइड विलयन का 1 ml  मिलाया जाता है|
      स्वर्ण संख्या का मान कम होने पर रक्षी कोलाइड की रक्षण क्षमता अधिक होती है कुछ रक्षी कोलाइड ओं की स्वर्ण संख्याओं के मान निम्न हैं-
रक्षी कोलाइड            स्वर्ण संख्या
 जिलेटिन                  0.005 - 0.01
हिमोग्लोबिन             0.03 - 0.07
स्टार्च                        20 - 25

कोलॉयडी विलयनों (सॉल) का शुद्धिकरण

कोलॉयडी विलयनों (सॉल) का शुद्धिकरण 
कोलाइडी विलयनो के निर्माण में उसमें विद्युत अपघट्य की अशुद्धियां होती हैं| कोलाइडी विलयन के शुद्धिकरण के लिए निम्न विधियों का उपयोग किया जाता है- (1) अपोहन-
पार्चमेंट झिल्ली या सैलोफेन झिल्ली द्वारा कोलाइडी विलयन में अशुद्धि के रूप में उपस्थित वास्तविक विलयन के कणों के आकार के अशुद्धि कणों को विसरण द्वारा अलग करने की विधि को अपोहन कहा जाता है|
     इस विधि में प्रयुक्त उपकरण को अपोहक कहते हैं| इसमें पार्चमेंट झिल्ली या सैलोफेन का एक बैग होता है| बैग में अशुद्ध सॉल भरकर चित्र के अनुसार उसे पानी से भरे एक टैंक में रख देते हैं| बैग में उपस्थित विद्युत अपघट्य की अशुद्धियां पानी में विसरित हो जाती हैं, जबकि शुद्ध साल बैग में शेष रह जाता है|

(2) वैद्युत अपोहन-
अपोहन एक मंद प्रक्रिया है लेकिन वैद्युत क्षेत्र का उपयोग करके इस प्रकरण को तेज किया जा सकता है| वैद्युत अपोहन में प्रयुक्त उपकरण को चित्र में प्रदर्शित किया गया है| वैद्युत क्षेत्र के प्रभाव में अशुद्ध आयन तीव्र गति से विपरीत आवेशित इलेक्ट्रोड की ओर गति करने लगते हैं| इस प्रकार यह प्रक्रम तेज हो जाता है|

(3) अति सूक्ष्म छनन-
सामान्य फिल्टर पेपर के छेदों का आकार बड़ा होता है| इस कारण उससे अशुद्ध कण तथा कोलाइडी कण आसानी से पार हो जाते हैं| अतः अशुद्ध सॉल से विद्युत अपघट्य की अशुद्धियों को दूर करने के लिए सामान्य फिल्टर पेपर का उपयोग नहीं किया जा सकता है| इसके लिए साधारण फिल्टर पेपर को कोलोडिओन नामक पदार्थ से लेपित करने के बाद उसे सुखाकर अशुद्ध कोलाइडी विलयन या सॉल को छाना जाता है| इसे ही अति सूक्ष्म छनन कहा जाता है|

कोलॉयडी विलयनों (सॉल) का निर्माण

कोलॉयडी विलयनों (सॉल) का निर्माण
कोलॉयडी विलयनों के निर्माण की अनेकों विधियां हैं| कुछ प्रमुख विधियां निम्न प्रकार हैं-
(1) रासायनिक विधियां-
परमाण्विक या आयनिक आकार के छोटे कणों को विभिन्न रासायनिक विधियों द्वारा कोलाइडी आकार के कणों में संगुणित किया जा सकता है|
 जैसे-
(a) ऑक्सीकरण-
H2S + Br2 ------> S + 2HBr 
(b) अपचयन -
2AuCl3 + 3SnCl2 ----> 2Au + 3SnCl4 
(c) उभय अपघटन -
As2O3 + 3H2S -----> As2S3 + 3H2O 

(2) ब्रेडिंग आर्क विधि- 
इस विधि में परिक्षेपण माध्यम में उपस्थित धातुओं के दो इलेक्ट्रोडो के बीच वैद्युत आर्क उत्पन्न किया जाता है| परिक्षेपण माध्यम को एक शीतलन मिश्रण के द्वारा ठंडा करते हैं| आर्क के द्वारा उत्पन्न बहुत अधिक ताप थोड़ी सी धातु को वाष्पित कर देता है| यह वाष्प संघनित होकर कोलाइडी आकार के कण बनाती है| इस प्रकार बनने वाले कोलाइडी कण माध्यम में परिक्षिप्त होकर धातु का सॉल बनाते हैं|

(3) पेप्टीकरण -
वह प्रक्रम जिसमें ताजे बने अवक्षेप को किसी उचित विद्युत अपघट्य का उपयोग करके कोलाइडी विलियन में परिवर्तित किया जाता है, पेप्टिकरण कहलाता है| इसमें उपयोग किए जाने वाले विद्युत अपघट्य को पेप्टीकारक होते हैं|
जैसे -
फेरिक हाइड्रोक्साइड के ताजे बने अवक्षेप में जब फेरिक क्लोराइड की थोड़ी सी मात्रा मिलाई जाती है तो फेरिक हाइड्रोक्साइड का लाल भूरे रंग का कोलाइडी विलयन बनता है|

Friday, October 2, 2020

कोलॉयडी तंत्रों के प्रकार(Types of Colloidal systems)

कोलॉयडी तंत्रों के प्रकार(Types of Colloidal systems)
कोलाइडी तंत्रों को कई प्रकार से विभाजित किया जा सकता है-
(A) परिक्षिप्त प्रावस्था तथा परिक्षेपण माध्यम की भौतिक अवस्थाओं के आधार पर-
परिक्षिप्त प्रावस्था तथा परिक्षेपण माध्यम की भौतिक अवस्था के आधार पर कुल 8  प्रकार के कोलाइडी अवस्थाएं संभव है जो निम्न प्रकार हैं-

(B) परिक्षिप्त प्रावस्था  एवं परिक्षेपण माध्यम के प्रति बंधुता के आधार पर-
इस आधार पर कोलॉयडी तंत्र दो प्रकार के होते हैं-
(1) द्रव स्नेही या द्रवरागी सॉल 
(2) द्रव विरोधी या द्रवविरागी सॉल 

(1) द्रव स्नेही या द्रवरागी सॉल -
द्रव स्नेही शब्द का अर्थ विलायक स्नेही है| वे पदार्थ जिन्हें द्रव अर्थात परिक्षेपण माध्यम के संपर्क में लाने से कोलाइडी विलयन प्राप्त किया जा सकता है, उन्हें द्रव स्नेही कोलाइड कहा जाता है|
 जैसे- गोंद, जिलेटिन, एल्ब्यूमिन, स्टार्च  इत्यादि
ये उत्क्रमणीय कोलॉयड भी कहलाते हैं|
(2) द्रव विरोधी या द्रवविरागी सॉल -
वे पदार्थ जो परिक्षेपण माध्यम के लिए स्नेह प्रदर्शित नहीं करते हैं तथा परिक्षेपण माध्यम के संपर्क में लाने पर तुरंत कोलाइडी विलयन का निर्माण नहीं करते हैं उन्हें द्रव विरोधी कोलाइडी कहा जाता है| 
जैसे- गोल्ड सॉल, प्लैटिनम सॉल 
ये  अनुत्क्रमणीय सॉल भी कहलाते हैं|

(C) कोलाइडी अवस्था में परिक्षिप्त प्रावस्था के आकार एवं रचना के आधार पर-
इस आधार पर कोलाइडी विलयनों को  निम्न तीन भागों में बांटा जा सकता है-
(1) बहुआणविक कोलॉयड 
(2) वृहतआणविक कोलॉयड  
(3) संगुणित कोलॉयड या मिसेल 

(1) बहुआणविक कोलॉयड -
जब 1 nm  से कम व्यास वाले छोटे अणु  या परमाणु परिक्षेपण माध्यम में परस्पर संयोग करके कोलाइडी आकार के कणों का निर्माण करते हैं तो इसे बहुआणविक  कोलॉयड कहा जाता है|
 जैसे- गोल्ड सॉल,  सल्फर सॉल इत्यादि

(2) वृहतआणविक कोलॉयड -
कुछ पदार्थ इस प्रकार के अणुओं का निर्माण करते हैं जिसके आकार कोलाइडी कणों के आकार के समान होते हैं| इस प्रकार के अणुओं  के अणुभार काफी अधिक होते हैं तथा इन्हें वृहत्अणु  कहा जाता है इस प्रकार के पदार्थों को जब किसी उपयुक्त परिक्षेपण माध्यम में परिक्षिप्त किया जाता है तो प्राप्त विलयन को वृहतआणविक  कोलाइड कहा जाता है|
जैसे - स्टार्च, जिलेटिन आदि का विलयन 

(3) संगुणित कोलॉयड या मिसेल-
जो कोलॉयड निम्न सांद्रता पर सामान्य प्रबल विद्युत अपघट्य की भांति व्यवहार करते हैं लेकिन उच्च सांद्रता पर कणों के संगुणन  के कारण कोलाइडी गुण प्रदर्शित करते हैं उन्हें संगुणित  कोलॉयड कहा जाता है| इस प्रकार बनने वाले संगुणित  कणों को मिसेल कहा जाता है| 
जैसे- साबुन तथा संश्लेषित डिटर्जेंट का विलयन

--------------------------------------------------

साबुन के विलयन में मिसेल का निर्माण-
सामान्यतः प्रयोग में लाए जाने वाले साबुन उच्च वसीय अम्ल जैसे- पामिटिक अम्ल(C15H31COOH), स्टीएरिक अम्ल(C17H35COOH),आदि के सोडियम या पोटैशियम लवण होते हैं| 
सर्वाधिक उपयोग में लाया जाने वाला साबुन सोडियम स्टीएरेट है|
      सामान्यतः साबुन को RCOONa के द्वारा प्रदर्शित किया जा सकता है जहां R  लंबी श्रृंखला वाले एल्किल समूह को व्यक्त करता है|
           साबुन को जब पानी में घोला जाता है तो वह आयनिकृत होकर   RCOO´ तथा Na+ का निर्माण करता है| RCOO´ आयन के दो भाग, लंबी हाइड्रोकार्बन श्रृंखला R  तथा पोलर समूह -COO´  होते हैं| हाइड्रोकार्बन श्रृंखला R जल विरोधी होता है, जबकि -COO´ समूह जल स्नेही होता है|
          साबुन के हाइड्रोकार्बन R  वाले सिरे को पूँछ तथा उसके -COO´ समूह को सिर कहा जाता है| साबुन का पूँछ जल विरोधी जबकि उसका सिर द्रव स्नेही  होता है|
        अतः RCOO´ स्वयं को इस प्रकार विन्यासित करता है कि इसका -COO´  सिरा जल में डूबा रहे तथा समूह R जल से दूर रहे| विभिन्न RCOO´ आयनों के       -COO´ समूह समान आवेश के होने के कारण एक-दूसरे से दूर रहने की प्रवृत्ति रखते हैं| जबकि R समूह एक दूसरे के समीप आकर एक गुच्छे के रूप में एकत्रित हो जाते हैं| इस कारण ही एक मिसेल का निर्माण होता है|
      इस प्रकार साबुन का एक मिसेल एक ऐसा  ऋण आवेशित कोलाइडी कण है जिसमें ऋण आवेशित -COO  समूह सतह पर गोलाकार  रूप में व्यवस्थित रहते हैं जबकि हाइड्रोकार्बन श्रृंखलाएं केंद्र की ओर केंद्रित रहती हैं|

साबुन की प्रक्षालन क्रिया (Cleansing action of soap)-
साबुन का उपयोग प्रायः गंदे वस्त्रों की सफाई के लिए किया जाता है| धूल तथा तैलीय पदार्थों के एकत्रित होने के कारण वस्त्र गंदे हो जाते हैं| जल के द्वारा तैलीय पदार्थों को अलग नहीं किया जा सकता है| जबकि साबुन के एनायन(RCOO´) में उपस्थित हाइड्रोकार्बन अवशेष R  इस कार्य को संपादित कर सकते हैं| जब किसी गंदे वस्त्र को साबुन के घोल में डुबोया जाता है तो RCOO´ के हाइड्रोकार्बन अवशेष R, तैलीय गंदगी को घोलकर एक मिसेल का निर्माण करते हैं| वस्त्र को जब पानी में धोया जाता है तो मिसेल जिसमें तैलीय गंदगी होती है, पानी के साथ घुलकर अलग हो जाती है| साबुन की प्रक्षालन क्रिया को निम्न चित्र में दर्शाया गया है|